Мой город — Салехард
Выбрать другой город:
Учёба.ру WWW.UCHEBA.RU
 

Советы эксперта: как сдать ОГЭ по математике

ОГЭ по математике — обязательный экзамен за курс средней школы, его сдают все российские выпускники 9 классов. О том, как подготовиться к экзамену, «Учёба.ру» побеседовала с преподавателем физико-математической школы Института довузовской подготовки Московского технологического университета Ольгой Алексеевной Евсеевой.
Анна Буланова
Главный редактор Учеба.ру
09 октября 2018
1 комментарий
Фото: Steve Jurvetson / Flickr / CC BY 2.0
Ольга Евсеева,
преподаватель математики физико-математической школы Института довузовской подготовки
Московского технологического университета (МИРЭА, МИТХТ, МГУПИ)
По вашему мнению, насколько хорошо девятиклассники сейчас знают математику? Насколько сложен для них этот ОГЭ?

Не сказала бы, что школьники не знают математику. Как правило, к нам на занятия приходят ребята с неплохим начальным уровнем, с хорошими навыками выполнения арифметических действий и преобразования выражений, знакомые с методами решения линейных, квадратных уравнений и неравенств — то есть со всем тем, что они должны знать к началу 9 класса. Конечно, глубина знаний и умение ими пользоваться напрямую зависят от количества часов математики в школе: при изучении предмета на базовом уровне это три-четыре часа алгебры и два часа геометрии в неделю, на углубленном уровне — пять-семь часов алгебры и три часа геометрии. Поскольку ОГЭ состоит из двух частей, первая из которых проверяет базовый уровень подготовки, а вторая включает более сложные задания, ребятам, изучающим в школе базовую математику, необходимо выделить дополнительное время для подготовки.

Иногда школьных уроков и самостоятельной работы достаточно, чтобы сдать ОГЭ на хорошо и отлично. В качестве подспорья можно использовать различные сайты и учебную литературу в открытом доступе. Возникающие вопросы можно обсудить на форумах или со школьным учителем. Но занятия на курсах помогают последовательно разобрать темы, систематизировать материал, проверить глубину его усвоения. Ведь после ОГЭ ребят через два года ждет более трудное испытание — ЕГЭ, в котором часть базовых заданий аналогичны заданиям повышенной и высокой сложности из ОГЭ. Девятиклассники впервые сдают экзамен, содержащий так много заданий, и его длительность составляет 3 часа 55 минут. Безусловно, для ребят это непросто.

Расскажите про структуру экзамена и систему начисления баллов. За какие задания на ОГЭ по математике ставится наибольшее количество баллов?

Всего школьникам предлагается 26 заданий. До недавнего времени экзамен состоял из трех частей — «Математика», «Реальная математика» и «Геометрия». С 2018 года раздела «Реальная математика» в ОГЭ больше нет, а его задания распределены между модулями «Алгебра» и «Геометрия».

Ребятам предстоит решить 17 задач по алгебре (14 задач в части 1 и три в части 2) и девять задач по геометрии (шесть задач в части 1 и три в части 2). Задания части 1 требуют краткого ответа в виде числа или последовательности цифр, которые вносятся в бланк ответов № 1. Развернутые решения заданий части 2 и ответы к ним записываются на бланке ответов № 2. За правильный ответ на каждое из заданий № 1-20 ставится 1 балл. Эти задания проверяются автоматически при сканировании бланков. Задания № 21-26 проверяют двое независимых экспертов, хотя при значительном расхождении оценок назначается проверка третьим экспертом. Эти задания могут быть оценены от 0 до 2 баллов. Таким образом, максимально за работу можно получить 32 первичных балла. Пятерка ставится за результат от 22 баллов, четверка — от 15 баллов, тройка — от 8 баллов (из них не менее 4 баллов по алгебре и 2 баллов по геометрии).

Как видите, для положительной оценки достаточно решить лишь восемь задач из части 1, а для пятерки — безошибочно выполнить базовую часть экзамена и только одно из заданий повышенной сложности. Вроде бы задача «сдать ОГЭ на отлично» не кажется такой уж сложной. Однако с заданиями повышенной сложности из части 2 ребятам придется снова столкнуться на ЕГЭ, уже в его базовой части. Например, задание № 22 повышенного уровня сложности — «текстовая задача» — аналогично заданию № 11 из части 1 ЕГЭ. Поэтому, как мне кажется, ребятам уже в 9 классе надо освоить методы и приемы решения заданий из части 2.

По вашему опыту преподавания, какие разделы математики самые сложные для школьников и вызывают наибольшее затруднение? Какие темы самые простые?

В модуле «Алгебра» это, прежде всего, исследование функций и построение их графиков. Задания на эту тему входят и в часть 1, и в часть 2 ОГЭ. В задании № 10 нужно установить соответствие между графиками функции и формулами, которые их задают. Здесь школьники часто ошибаются, пытаясь угадать ответ вместо того, чтобы рассуждать логически. В части 1 можно еще отметить задания на преобразование и вычисление выражений, если там содержатся радикалы: задание № 4, где надо найти значение выражения, и задание № 12, где сначала выражение надо упростить, а потом вычислить. Работать с корнями правильно получается далеко не у всех. Также не всегда ребятам удается справиться с заданием № 13 — «задачей прикладного содержания», где из несложной формулы нужно выразить одну из величин, найти ее значение, а ответ записать в указанных единицах измерения. Сложность здесь как раз заключается в переходе от одной размерности к другой.

В модуле «Геометрия» в части 1 включены задачи, относящиеся к ключевым разделам курса геометрии. И все же, если в задании встречаются такие темы, как «вписанная и описанная окружности», «вписанные углы», «соотношения между сторонами и углами прямоугольного треугольника», «подобие треугольников», показатель его решаемости падает.

Меньше всего ошибок девятиклассники допускают в заданиях на чтение таблиц и диаграмм, нахождение вероятности случайного события.

Какие есть «подводные камни» в заданиях части 2? На что нужно обратить внимание при подготовке к заданиям повышенной сложности?
Задание № 21 В этом задании необходимо решить уравнение или неравенство, преобразовать алгебраическое выражение. При решении рациональных и дробно-рациональных уравнений, а также уравнений высших степеней необходимо обращать внимание на возможность потери решения (при сокращении на выражение, которое может быть равным нулю) или получение посторонних решений (которые обнуляют знаменатель или обращают исходное уравнение в выражение, не имеющее смысла). При решении неравенств надо помнить, что при умножении неравенства на отрицательное выражение оно меняет знак. Зачастую школьники либо просто не обращают внимание на знак величины, на которую умножают неравенство, либо умножают неравенство на выражение, содержащее переменную.
Задание № 22 Это текстовая задача, как правило, на «движение», «работу», «концентрации растворов» или «смеси и сплавы». Для ее решения необходимо составить уравнение или систему уравнений. Я бы посоветовала ребятам для наглядности обязательно заполнять таблицу, в которую вносятся известные по условию величины, выбранная переменная или переменные, после чего в пустые клетки вписываются соответствующие им величины, выраженные через введенные переменные, и только потом приступать к составлению уравнения (или системы).
Задание № 23 Построение графика функции. Для правильного выполнения этого задания необходимо знать свойства следующих функций: линейная, квадратичная, либо функция, описывающая обратно пропорциональную зависимость. Также необходимо уметь строить графики этих функций, знать правила преобразования графиков. Очень часто встречаются задания, в которых формулу, задающую исходную функцию, можно преобразовать, после чего она значительно упрощается. Здесь необходимо помнить, что область определения исходной и получившейся функции могут не совпадать.
Задание № 24 Геометрическая задача вычислительного характера. Школьник должен решить планиметрическую задачу, применяя различные теоретические знания из курса геометрии.
Задание № 25 Геометрическая задача на доказательство с использованием стандартных приемов. Здесь надо обратить внимание на умение математически грамотно и ясно записать решения, приведя все необходимые обоснования и пояснения.
Задание № 26 Для решения этой задачи школьникам нужно владеть широким спектром приемов и способов рассуждений. Здесь возможно потребуются и дополнительные построения, и знание утверждений, не так часто используемых в школьном курсе. Например, теорема об угле между касательной и хордой; теорема о секущих и касательной; свойства высоты прямоугольного треугольника, опущенной из прямого угла; свойства биссектрис, медиан, высот треугольника; теорема Чевы; теорема Менелая.
Что нужно делать школьнику, чтобы подготовиться к экзамену наилучшим образом? Как вы посоветуете им распределить свое время?

На занятиях со школьниками я обычно придерживаюсь следующей стратегии. Во-первых, мы полностью проходим программу 9 класса, начиная с отработки основных навыков и умений по следующим темам: преобразование алгебраических выражений, решение уравнений и неравенств, числовые последовательности, функции, их свойства и графики, элементы статистики и теории вероятностей. Постепенно повышая уровень заданий, мы переходим к решению задач повышенной и высокой сложности и стараемся уделить этим заданиям как можно больше внимания. Не менее трети времени следует посвятить геометрии, и здесь также нужно двигаться «от простого к сложному».

Во-вторых, необходимо готовиться к самому формату ОГЭ, к его структуре. Если ученик хорошо умеет решать задачи, но ни разу не пробовал написать работу в этом формате, ему сложно будет оценить количество затрачиваемого времени на часть 1 и 2. Обязательно нужно научиться правильно распределять свои силы.

Многие девятиклассники не используют предлагаемое на экзамене время полностью, у них просто не хватает усидчивости. Ребята сдают работу раньше, хотя еще остались нерешенными задания повышенной сложности. Зачастую и в заданиях части 1 бывают ошибки по невнимательности, которые сам школьник не смог найти и исправить. На ЕГЭ же складывается обратная ситуация. Выпускники прилежно готовятся к экзамену, считают, что времени мало. Им хочется еще раз проверить свои решения и подумать над заданиями высокой сложности.

Какие источники вы рекомендуете использовать для самостоятельной подготовки к экзамену?
  • «Сайт ФИПИ». На нем вы найдете открытый банк заданий ОГЭ.
  • Сборник «ОГЭ. Математика 2018. Типовые и тестовые задания». Таких сборников очень много, нужно обращать внимание на гриф «рекомендовано ФИПИ».
  • Учебные пособия Центра непрерывного математического образования. Например, сборник «Подготовка к ОГЭ по математике. Методические указания. Разбор задач». На 500 страницах здесь можно найти подробный разбор каждой из 26 задач экзамена и множество вариантов каждой из них для самостоятельного решения.
  • «Сайт Alexlarin.net». Здесь каждую неделю выкладывается новый вариант ОГЭ и новый вариант ЕГЭ. Ребятам дается семь дней на размышление. Они могут обсуждать свои решения на специальном форуме. Потом вывешиваются правильные ответы.
  • «РешуЕГЭ». На сайте доступен большой банк заданий. Тесты можно составлять самостоятельно, выбирая лишь те темы, над которыми необходимо поработать. Небольшой минус — тесты часто получаются похожими друг на друга.
Анна Буланова
Главный редактор Учеба.ру
09 октября 2018
1 комментарий
 

Обсуждение материала

Оставить комментарий

Cпецпроекты